Enhanced Molecular Ion in GC/MS by Cold EI

Charlie Schmidt
29 April 2015 WCTOW
If you can’t explain it simply, you don’t understand it well enough.

– Albert Einstein
Importance of Molecular Ion for GC/MS

- Electron Ionization Gas Chromatography / Mass Spectrometry (EI GC/MS) is a powerful and information-rich technique for qualitative characterization and quantitative analysis of the compounds in a mixture.

- A very valuable function of EI GC/MS is to provide the molecular weight of a compound, often key to analyte identification.

- Many compounds, especially those with long or branched hydrocarbon chains, do not have a stable molecular ion under EI conditions - it can be small or completely absent in the spectrum.
If Only It Was This Easy

3. Find x.

Here it is
Importance of Molecular Ion for GC/MS

- Cold Electron Ionization GC/MS (Cold EI GC/MS)
 - Enhances the molecular ion abundance of most compounds
 - Enhancing molecular weight determination
 - While retaining the EI fragmentation pattern for spectral library searching.
Cold EI Ion Source
Supersonic Molecular Beam

- Velocity is increased (kinetic energy in the range of 1-20 eV)
- Velocity is directed along the beam (jet separation)
- Vibrational Energy is decreased (supercooling hence “Cold EI”)
- Flow rate compatibility of 100 mL/min (x100 of standard GC-MS)
How does Cold EI work?

- Molecules exit the GC column, and are mixed with a make-up gas
- Nozzle adiabatic expansion ‘cools’ the analyte molecules in a supersonic molecular beam, reducing internal energy
- Excess carrier gas is skimmed off
- Cold molecules (~15 K) enter source for molecular ion formation and mass analysis
AxION iQT - Innovative ion optics

Curved ion guides to eliminate neutrals and maximize signal-to-noise

MS data at the speed of ToF
AxION iQT GC/MS/MS

- GC/MS/MS
 - Novel GC/MS/MS configuration
 - All MS/MS fragment ions all the time
- Conventional EI and Cold EI ion sources
- Cold EI operates in four modes:
 - Cold EI with Vacuum Background Removal (VBR)
 - Cold EI without VBR
 - Classical EI
 - Low eV Cold EI
- Mass analysis can be full spectrum or MS/MS
- MS/MS shows full fragment ion spectra, not just 1 or 2 MRM ions
Molecular Ion Dependence on Carbon Number

- In Standard EI the molecular ion is reduced by ~20% per each added carbon.
- In Cold EI it is approximately size independent.
- The relative abundance of the molecular ion in Cold EI is significantly enhanced.
- The enhancement is exponentially increased with the carbon number up to a factor of 2500 for C\textsubscript{40}H\textsubscript{82}.

Cold EI Enhances Molecular Ion for Hydrocarbons as Carbon Number Increases

\[n-C_{10} \] - EI (NIST)

\[n-C_{32} \] - EI (NIST)

\[n-C_{10} \] - Cold EI

\[n-C_{32} \] - Cold EI

... molecular ion increases with carbon number
Strong Molecular Ions when EI does not have any
- Squalane C\textsubscript{30}H\textsubscript{62}

 Highly-branched chains often have low intensity molecular ion
Cold EI for molecular ions from high-boiling hydrocarbons

$n\text{-}C_{54}$ - EI (NIST)

$n\text{-}C_{70}$ - EI (NIST)

Not available in NIST 2014 or Wiley 10th mass spectral databases

$n\text{-}C_{54}$ - Cold EI

$n\text{-}C_{70}$ - Cold EI

… high flow rates enable high boiling points
Jet Fuel Isomer Characterization
Many possible hydrocarbon isomers

The On-Line Encyclopedia of Integer Sequences (OEIS), A000602, A000628, A134818.
Isomer Distribution Important for Jet Fuel Analysis

• Hydrocarbon isomer distribution contributes to important fuel characteristics
 ◦ Boiling and melting points, octane number, combustion efficiency, flash point, viscosity, lubricity, solubility, and solvation power
 ◦ Strongly influenced by hydrocarbon chain branching
 ◦ Helpful to monitor blending & refining process, catalysts, and the product

• If these are not to specification, jet fuel lines can freeze up or engines malfunction

• Without knowing component molecular weights, difficult to figure out the composition
 ◦ High mass accuracy does not help without a molecular ion

• Cold EI provides the molecular ion
 ◦ Can use this to help determine fuel composition

• “Isomer analysis”
“Jet A” Jet Fuel, C₈ - C₁₄ by EI GC/MS

... EI does not show significant alkane isomers
“Jet A” Jet Fuel, C₈ - C₁₄ by *Cold EI* GC/MS

Cold EI clearly show alkane isomers n-C₁₀, n-C₁₂, n-C₁₄, n-C₁₆, and n-C₁₈.
“Jet A” Jet Fuel, C\textsubscript{15} – C\textsubscript{20} by EI GC/MS

EI begins to show weak isomers, then drops into the noise.
“Jet A” Jet Fuel, C$_{15}$ – C$_{20}$ by Cold EI GC/MS

Cold EI clearly shows isomers.
Comparing EI and Cold EI GC/MS

Cold EI shows much stronger isomer peaks and mass chromatograms.
“Jet A” Jet Fuel, C$_{17}$ isomers all show Molecular Ion in Cold EI
"Jet A" Jet Fuel, C\textsubscript{17} isomers show small or no Molecular Ion with EI

Isomer A

Isomer B

Isomer C

Not detected

n-C17
“Jet A” Jet Fuel, EI vs. Cold EI

EI Isomer A

Scan: 1942 n:7.3 (1941-1943)-(1951-1953)

Scale: 1.304 e - 4

EI n-C17

Scan: 2168 n:8.2 (2157-2169)-(2177-2179)

Scale: 4.205 e - 3

Cold EI Isomer A

Scale: 4.223 e - 3

Cold EI n-C17

Scan: 2168 n:8.5 (2157-2169)-(2177-2179)

Scale: 319 e - 4

... much larger Molecular Ion with Cold EI for isomer identification
Potential Petro Applications for Cold EI

- Isomer analysis
- Petrochemicals and fuels development
- Fuel adulteration
- Arson & Forensic
- Motor oil analysis
- Transformer oil analysis
- Environmental oil spills
- Biodiesel analysis
- Organic Geochemistry
- Hydrocarbon polymers
Cold EI Advantages

- **Selectivity and inertness**
 - Stronger molecular ion than EI, or a molecular ion when EI does not yield one
 - Molecular ion gives better selectivity (uniqueness) than fragment ions
 - Elimination of neutral mass independent noise

- **Extended GC compound range**
 - High column flow rates (up to 100 mL/min) reduce analyte elution temperatures
 - Extended range of low volatility (e.g. n-C$_{70}$) and thermally labile compounds (e.g. Reserpine)
 - High molecular weight polar and non-polar compounds

- **Uniform compound response**
 - Improved “standardless” semi-quantitation – e.g. experimental reaction yields

- **Isomer analysis for petrochemical**
Cold EI vs. EI or CI MS Techniques

- AxION iQT Cold EI vs. Chemical Ionization GC/MS
 - Molecular ion enhanced, rather than M-1, M+1, M+15, etc.
 - EI fragmentation remains, for library searchable spectra
 - Fly-through ion source does not need cleaning, vs. daily or weekly cleaning for CI

- AxION iQT Cold EI-GC/MS/MS vs. EI-GC/MS/MS
 - Enhanced molecular ion for better
 - Molecular weight confidence
 - Selectivity
 - Easier method development
 - Structural assignment
Summary

- Long-chain hydrocarbons and branched isomers can have small or no molecular ions
- Cold EI typically gives a significantly stronger molecular ion than EI, and can show one even when EI does not
- Cold EI enables visualization of isomers in Jet Fuel by molecular ion mass chromatograms
- Isomer characterization aids in determination of
 - Fuel properties
 - Economic value
 - Catalyst performance
 - Process yield optimization
Acknowledgments

- Prof. Aviv Amirav for extensive discussions on Cold EI
- Dr. David Wooton for jet fuel samples and discussions
- The PerkinElmer Axion iQT Product Team

Tanja Bambino
Tony Chiappetta
Avinash Dalmia
Thomas Dillon
Steve Fehl
Keith Ferrara
Henry Gobbo
Neal Green
Charlie Hale
Jerry Hall
Donald Hellerman
Dana Hostetler
Jay Ives
Yan Jiang

Leon Johnson
Charlie Mangarella
Joanne Mather
Susan McIntosh
Luc Menard
Keli Molon
Edward Morlando
Joseph Orlando
Paul Ortolan
Michael Pawlyk
Sharanya Reddy
John Roch
Kathy Rowberry
Jack Sanga

Jamie Saulnier
Paul Schallis
Urs Steiner
Leslie Sullivan
Ramesh Sureja
Andrew Tyler
Rob Valley Jr.
Rob Valley Sr.
Leonard Weisgable
Dave Welkie
Thomas White
Bryan Whittington
Anandita Yadav
THANK YOU!