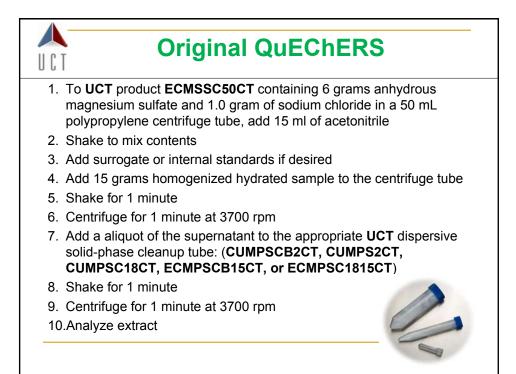


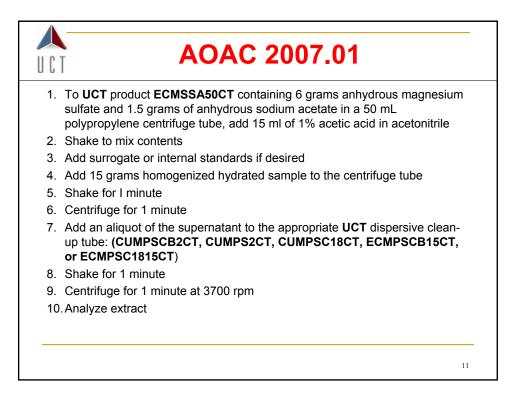
• Some modifications to the original QuEChERS method have been introduced to ensure efficient extraction of pH dependent compounds and to minimize degradation of base and acid labile pesticides

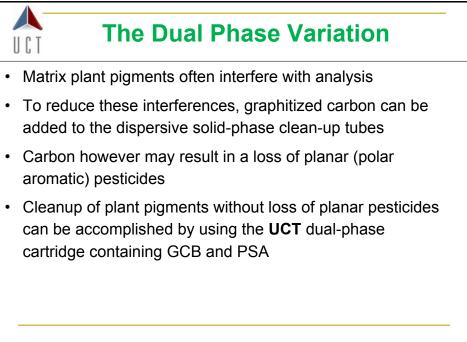
• Buffering with citrate salts has been introduced in the micro extraction to adjust the pH to a compromise value of 5 to 5.5, where most acid and base labile pesticides are sufficiently stabilized. To improve stability of base-labile compounds in the sample extracts, a small amount of formic acid is added to the final extract after cleanup

• Acidic pesticides are directly analyzed from the raw extract before PSA cleanup since they would be adsorbed and not released by the sorbent

•In another modification introduced by Schenck, a graphitized carbon black (GCB) PSA cartridge is used to remove plant pigments without the loss of planar compounds

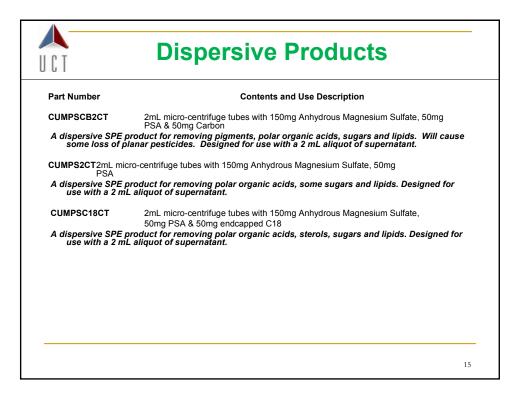

Currently there are four variations of the QuEChERS method being used in western countries

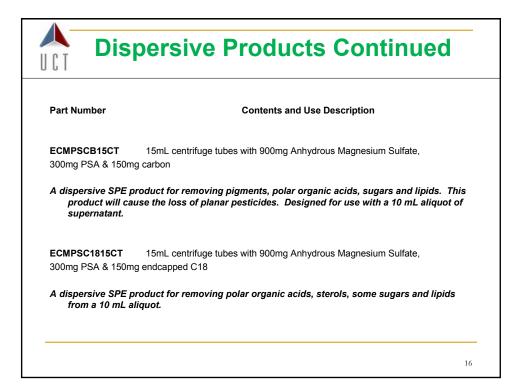

•The original QuEChERS method. Introduced in 2003, uses sodium chloride to enhance extraction


•AOAC 2007.01. Uses sodium acetate as a buffer replacing sodium chloride and 1% acetic acid in acetonitrile

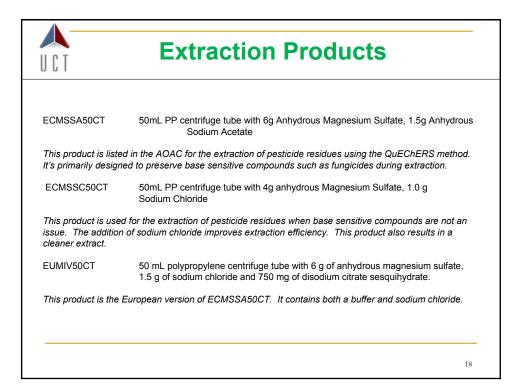
•The dual phase variation: This method variation introduces the use of a PSA and GCB cartridge to remove high levels of chlorophyll and plant sterols in the final extract without the loss of planar pesticides (polar aromatics) using an acetone:toluene solvent blend (3:1).

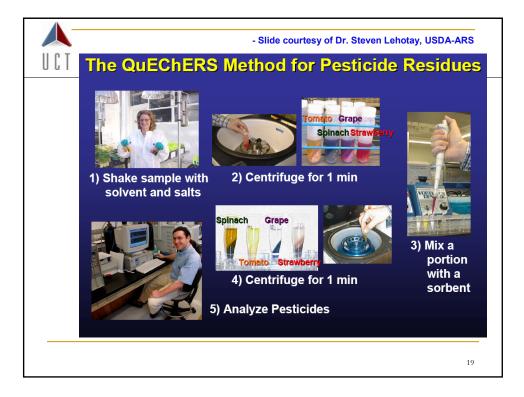
•The European version is similar to the AOAC method, except the extraction uses sodium chloride, sodium citrate dihydrate and disodium citrate sesquihydrate instead of sodium acetate.

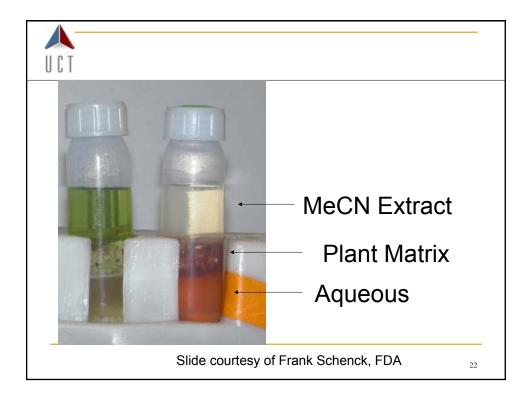


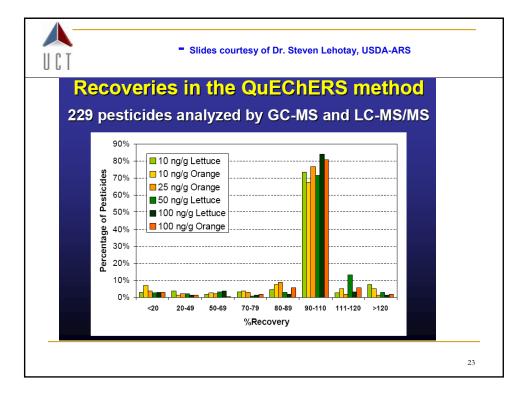


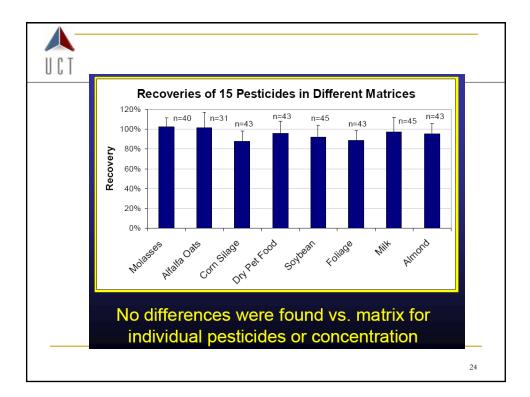
- 1. Pre-rinse cartridge with 5 mL of toluene
- 2. Add an aliquot of the supernatant to the cartridge
- 3. Start collection
- 4. Elute with 6-12 mL of <u>3:1 acetone:toluene</u>
- 5. Concentrate for GC/MS analysis or
- 6. Concentrate to dryness and reconstitute in mobile phase for LC analysis
- 7. Cartridge product selection used for this analysis: ECPSACB6, **ECPSACB256** or ECPSACB506 depending upon sorbent mass required

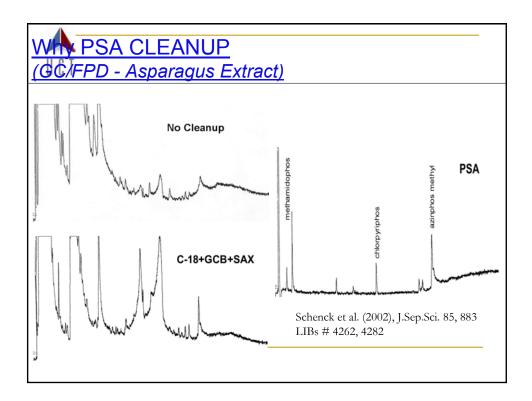


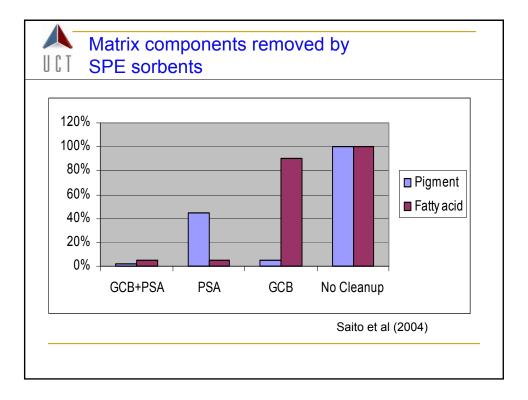

	Available Options from UCT
	· · · · · · · · · · · · · · · · · · ·
PART NUMBER	DESCRIPTION
CUMPSCB2CT	2mL micro-centrifuge tubes with 150mg Anhydrous Magnesium Sulfate, 50mg PSA & 50mg Carbon
CUMPS2CT	2mL micro-centrifuge tubes with 150mg Anhydrous Magnesium Sulfate, 50mg PSA
CUMPSC18CT	2mL micro-centrifuge tubes with 150mg Anhydrous Magnesium Sulfate, 50mg PSA & 50mg endcapped C18
ECMPSCB15CT	15mL centrifuge tubes with 900mg Anhydrous Magnesium Sulfate, 300mg PSA & 150mg Carbon
ECMPSC1815CT	15mL centrifuge tubes with 900mg Anhydrous Magnesium Sulfate, 300mg PSA & 150mg endcapped C18
ECPSACB6	6mL columns with 400mg PSA on bottom, 200mg Graphitized Carbon on top, separated by a Teflon frit*
ECPSACB256	6mL columns with 250mg Graphitized Carbon on top, 500mg PSA on the bottom, separated with a Teflon frit*
ECPSACB506	6mL columns with 500mg Graphitized Carbon on top, 500mg PSA on the bottom, separated with a Teflon frit*
ECMSSA50CT	50mL PP centrifuge tube with 6g Anhydrous Magnesium Sulfate, 1.5g Anhydrous Sodium Acetate
ECMSSC50CT	50mL PP centrifuge tube with 4g Anhydrous Magnesium Sulfate, 1g Sodium Chloride
EUMIV50CT	50 mL PP centrifuge tube with 6g of magnesium sulfate anhydrous, 1.5g of sodium chloride, 1.5g of sodium citrate dihydrate, And 750 mg of disodium citrate sesquihydrate


U C T	Cartridge Products
Part Number	Contents and Use Description
ECPSACB6	6mL columns with 200mg Graphitized Carbon on top, 400mg PSA on bottom, separated by a Teflon frit
	hase variation of QuEChERS, this product removes pigments, polar organic acids, ipids from an aliquot of extract.
ECPSACB256	6mL columns with 250mg Graphitized Carbon on top, 500mg PSA on the bottom, separated with a Teflon frit
Used for the same	application as ECPSACB6 but with a different quantity of sorbents.
ECPSACB506	6mL columns with 500mg Graphitized Carbon on top, 500mg PSA on the bottom, separated with a Teflon frit*
Used for the same	application as ECPSACB6 but with a different quantity of sorbents.
1	17

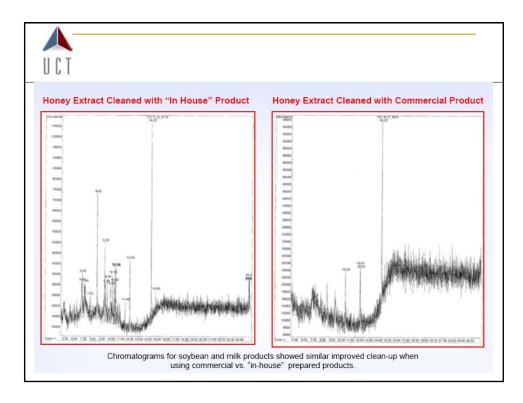




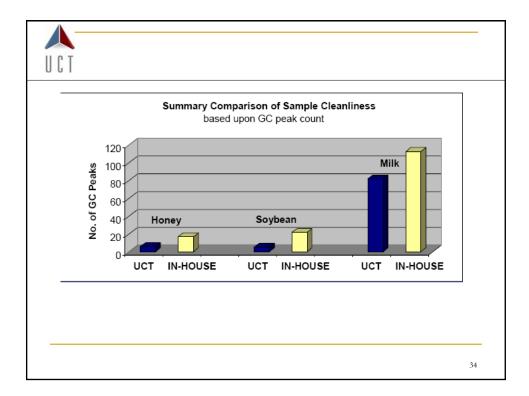


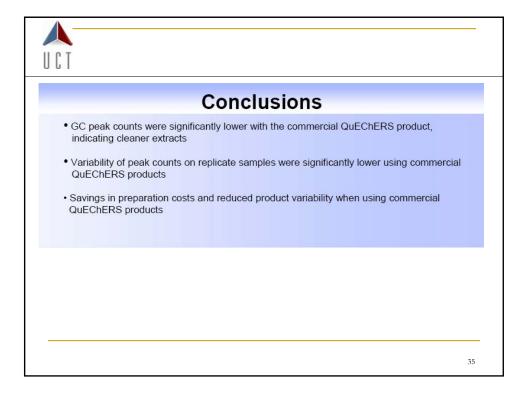


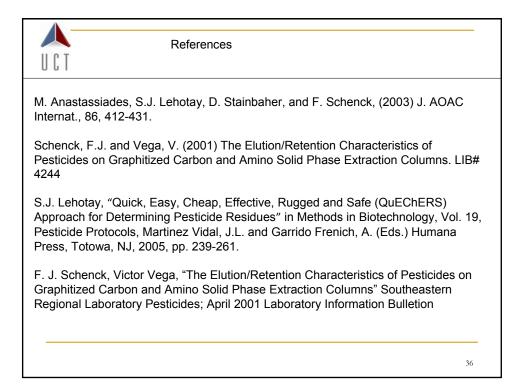
		Pesticide /	Analytes	
UCT		ides are capitalized. Lo can be analyzed under	C/MS/MS pesticides a	
acombota*	aaataminrid	Acrinathrin	aldicarb	aldicarb sulfone
acephate [*] aldicarb sulfoxide	acetamiprid Aldrin			
	Bifenthrin	azaconazole	azamethiphos Bromopropylate	azinphos-methyl
<u>azoxystrobin</u> Bupirimate	buprofezin	<u>bitertanol</u> butocarboxim	butocarboxim sulfone	bromuconazole butocarboxim sulfoxide
Cadusafos	<u>carbaryl</u>	carbendazim	<u>carbofuran</u>	3-hydroxy- carbofuran
chlorbromuron	(α -, γ -)Chlordane	(α-,β- Chlorfenvinphos	Chlorpropham	Chlorpyrifos
Chlorpyrifos- methyl	Chlorthaldimethyl	Chlorothalonil*	Chlozolinate	clofentezine
Coumaphos	cycloxydim*	(λ-)Cyhalothrin	cymoxanil	Cypermethrin
<u>cyproconazole</u>	cyprodinil	(2,4'-4,4'-)DDE	(2,4'-4,4'-)DDT	Deltamethrin
demeton	demeton-O- sulfoxide	demeton-S-methyl	demeton-S-methyl sulfone	desmedipham
Diazinon	dichlofluanid*	Dichlorobenzopheno ne	<u>dichlorvos</u>	diclobutrazole
Dicloran	dicrotophos	Dieldrin	Diethofencarb	difenoconazole
Diflufenican	dimethoate	dimethomorph	diniconazole	Diphenyl
Diphenylamine	<u>disulfoton</u>	disulfoton sulfone	diuron	dmsa
dmst	dodemorph	α- Endosulfan	β-Endosulfan	Endosulfan sulfate
EPN	epoxiconazole	Esfenvalerate	etaconazole	ethiofencarb

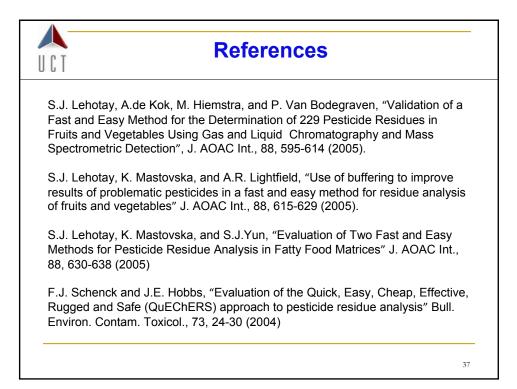

C T				
UI				
ethiofencarb sulfoxide	Ethion	ethirimol	Ethoprophos	etofenprox
Etridiazole	Famoxadone	fenamiphos	fenamiphos sulfone	Fenarimol
Fenazaquin	fenbuconazole	fenhexamid [*]	Fenithrothion	fenoxycarb
Fenpiclonil	Fenpropathrin	Fenpropidine	fenpropimorph	fenpyroximate
Fenthion	fenthion sulfoxide	Fenvalerate	florasulam*	Flucythrinate I & II
Fludioxonil	flufenacet	Flufenconazole	flusilazole	Flutolanil
Fluvalinate	Fonophos	fosthiazate	Furalaxyl	furathiocarb
furmecyclox	Heptachlor	Heptachlor epoxide	Heptenophos	Hexachlorobenzene
hexaconazole	hexythiazox	imazalil	imidacloprid	Iprodione
iprovalicarb	isoprothiolane	isoxathion	kresoxim-methyl	Lindane
linuron	Malathion	malathion oxon	Mecarbam	mephosfolan
Mepronil	Metalaxyl	metconazole	methamidophos*	Methidathion
methiocarb	methiocarb sulfone*	methiocarb sulfoxide	methomyl	methomyl-oxime
metobromuron	metoxuron	Mepanipyrim	Mevinphos	monocrotophos
monolinuron	myclobutanil	nuarimol	Ofurace	omethoate
oxadixyl	oxamyl	oxamyl-oxime	oxydemeton-methyl	paclobutrazole

ſΤ				
61				
Parathion	Parathion-methyl	penconazole	pencycuron	cis- Permethrin
trans-Permethrin	phenmedipham	o-Phenylphenol	Phorate	phorate sulfone
Phosalone	Phosmet	Phosmet-oxon	phosphamidon	Phthalimide
picoxystrobin	Piperonyl butoxide	pirimicarb	pirimicarb-desmethyl	Pirimiphos-methyl
prochloraz	Procymidone	profenofos	Prometryn	Propargite
Propham	propiconazole	propoxur	Propyzamide	Prothiofos
pymetrozine*	Pyrazophos	pyridaben	pyridaphenthion	pyrifenox
pyrimethanil	Pyriproxyfen	Quinalphos	Quinoxyfen	Quintozene
sethoxydim*	spinosad	spiroxamine	tebuconazole	tebufenozide
Tebufenpyrad	tetraconazole	Tetradifon	Tetrahydrophthalimide	Terbufos
Terbufos sulfone	thiabendazole	thiacloprid	thiamethoxam	thiodicarb
thiofanox	thiofanox sulfone	thiofanox sulfoxide	thiometon	thiometon sulfone
thiometon sulfoxide	thiophanate-methyl	Tolclofos-methyl	tolylfluanid*	triadimefon
triadimenol	Triazophos	trichlorfon	tricyclazole	tridemorph
trifloxystrobin	trifluminazole	Trifluralin	Triphenylphosphate	vamidothion
vamidothion sulfone	vamidothion sulfoxide	Vinclozolin		

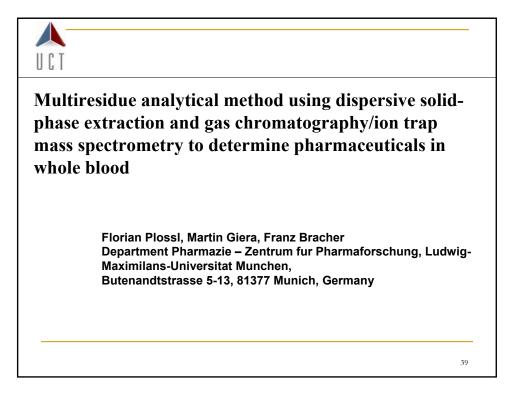

Why buy it from UCT?

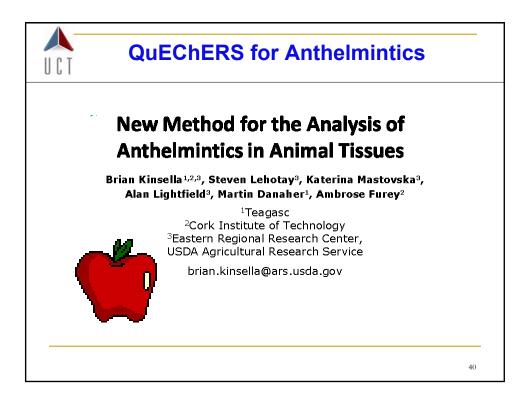

Since many laboratories assemble their own clean-up products for this analysis, a comparison study was conducted at the USDA ARS Eastern Regional Research Center to determine if commercially prepared QuEChERS products could be as effective as products prepared in the users lab. Bulk magnesium sulfate anhydrous, primary secondary amine (PSA) and endcapped C18 were purchased from a commercial source and compared to the commercial product assembled using the same lot of bulk sorbents. The ratio of magnesium sulfate, PSA and C18 was 3:1:1. The clean-up products were tested on extracts of milk, honey and soybean. Efficacy of clean-up was determined by GC/MS analysis and compared the number of peaks above threshold values. Results clearly showed that the commercially prepared product provided fewer interferences than the product prepared in the lab in all three matrices. The extra peaks observed in the lab prepared product were probably caused by contamination from the lab environment. The commercially assembled product was prepared under controlled conditions minimizing potential contamination. These results, coupled with the obvious time and labor savings for assembly, indicate that commercially available QuEChERS products are preferable to products made "in-house".

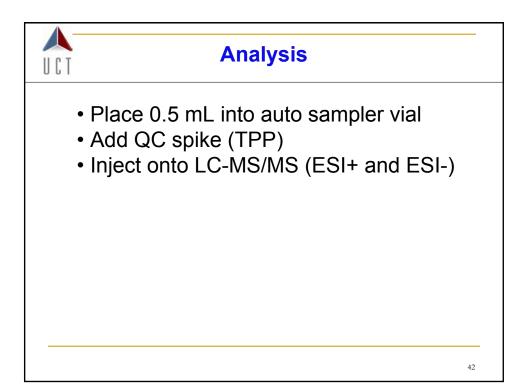

31

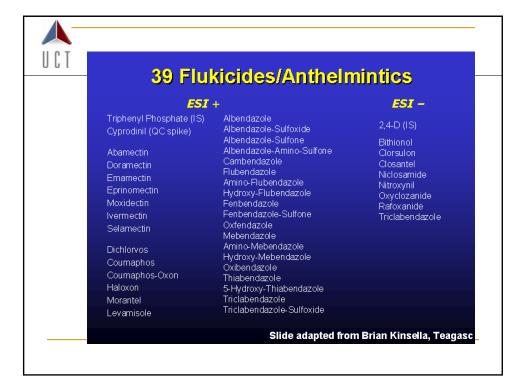


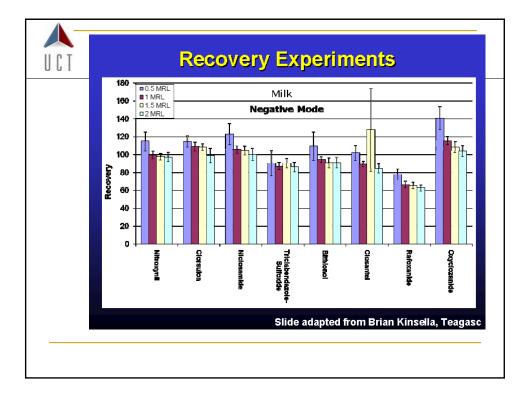
Above Threshold Value								
Matrix HONEY SOYBEAN MILK								
	UCT	IN-HOUSE	UCT	IN-HOUSE	UCT	IN-HOUSE		
Replicate	# of peaks							
1	7	20	7	17	43	91		
2	9	12	8	15	49	103		
3	7	21	5	20	52	108		
4	8	24	2	12	43	121		
5	5	18	6	8	46	117		
6	5	22	2	13	45	104		
7	8	8	7	11	49	89		
8	4	13	4	10	103	117		
9	5	18	4	7	107	127		
10	8	12	3	9	106	127		
11	6	15	2	31	116	120		
12	6	12	8	28	126	118		
13	6	19	6	35	104	119		
14	6	21	4	51	106	108		
15	5	20	4	43	100	118		
16	4	14	7	43	109	113		
Average	6	17	5	22	81	113		

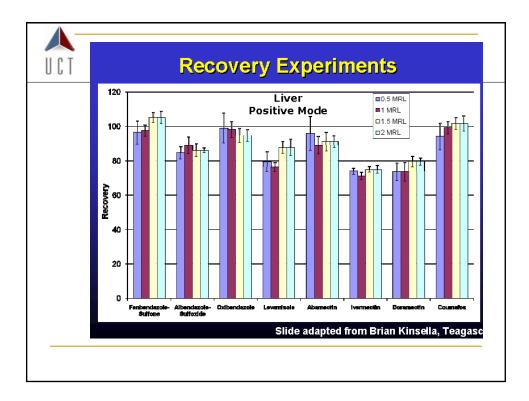


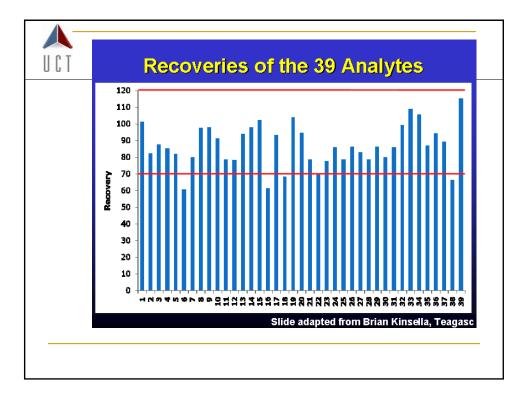


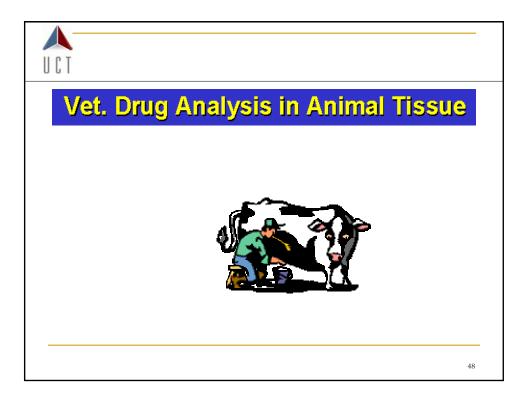





Extraction and Clean-up


- 1. Add 10 mL acetonitrile to UCT product ECMSSC50CT
- 2. Shake
- 3. Add 10 g. hydrated sample
- 4. Add internal standard (Cyprodinil + 2,4D)
- 5. Shake for 1 minute
- 6. Centrifuge for 5 minutes
- Clean-up by adding 1 mL of supernatant to a 2 mL centrifuge containing 50 mg UCT EEC18 sorbent and 150 mg UCT MgSO₄
- 8. Mix for 1 minute
- 9. Centrifuge for 1 minute





I C T						-	
		Remo	val of	Co-ex	ctractives	;	
	Ре	rcentag	ge of Ca	-extrac	tives Remo	ved	
			PSA	C18	PSA+C18		
		Liver	81%	36%	89%		
		Milk	10%	73%	90%		
	>PSA >PSA >But >C ₁₈	removes + C ₁₈ re PSA + C	₁₈ also re ovides su	acids ighest % moved a	o of co-extract		
				Slide adan	ted from Brian Kin	asenseT sliga	

Streamlined sample preparation method for analysis of many antibiotics in beef kidney/juice or serum

•Weigh out 1 g of homogenized beef kidney sample, or kidney juice or serum in a 50 mL FEP (fluorinated ethylene propylene) tube (a disposable polypropylene Corning tube can be used instead).

•Add 100 μ L of 1 μ g/mL composite internal standard solution of 13C-sulfamethazine (serving for volume changes compensation), penicillin-V and cefadroxil (a penicillin and cephalosporin, respectively, serving for method performance control) in water.

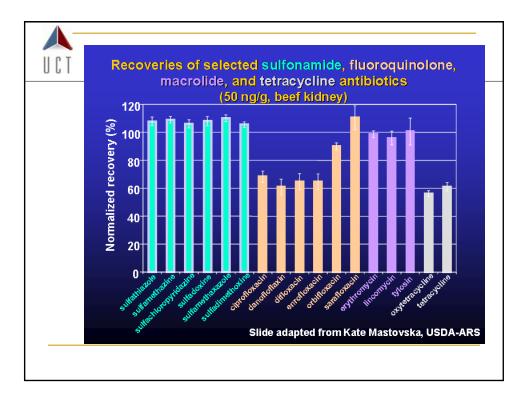
•Add 2 mL water and 8 mL acetonitrile.

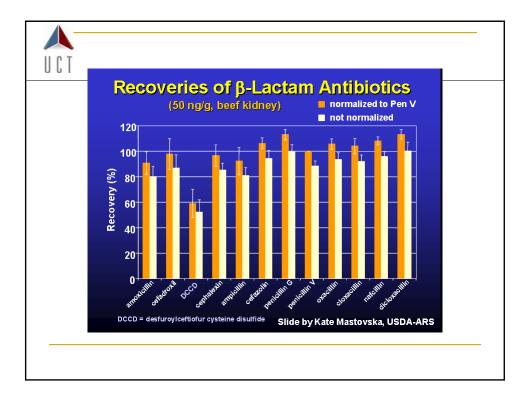
•Vortex briefly, shake for 5 min.

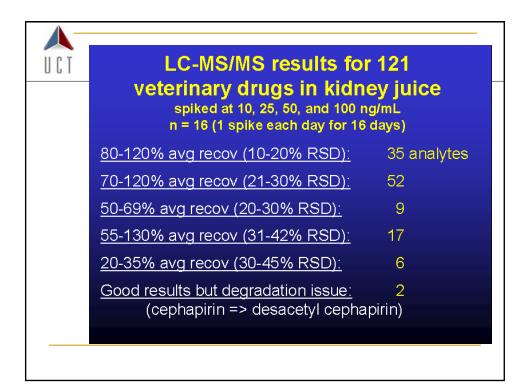
•Centrifuge at 3450 rcf for 5 min.

•Decant the supernatant into a 50 mL tube with 500 mg UCT EEC18 bulk sorbent.

•Vortex briefly, shake for 30 s.


•Centrifuge at 3450 rcf for 1 min.


•Place 5 mL aliquot of the supernatant into a graduated tube.


•Evaporate down to < 1 mL.

•Make up the volume to 1 mL with water.

•Transfer the extract into Whatman Uni-Prep vials (PVDF, 0.45 μ m) and compress the plunger to filter the extracts, which are then ready for LC-MS/MS analysis.

