

A Generic LC/MS/MS Method for the Analysis of Pesticides at 0.1µg/L in Water Samples by Direct Injection

Hesham Ghobarah, André Schreiber, Axel Besa, Jens Dahlmann, Yuriko Ozeki, CJ Baker

Senior Field Applications Specialist, Toronto, Canada

Outline

- Examination of generic direct injection methodology.
- Evaluation of sensitivity.
- Enabling technologies for assaying large numbers of analytes.
- Approaches to confirmation:
 - MRM Ratios
 - MS/MS Library Searching
- Software turn-key solutions for streamlining routine analysis and report generation.

vstems | MDS SCIEX

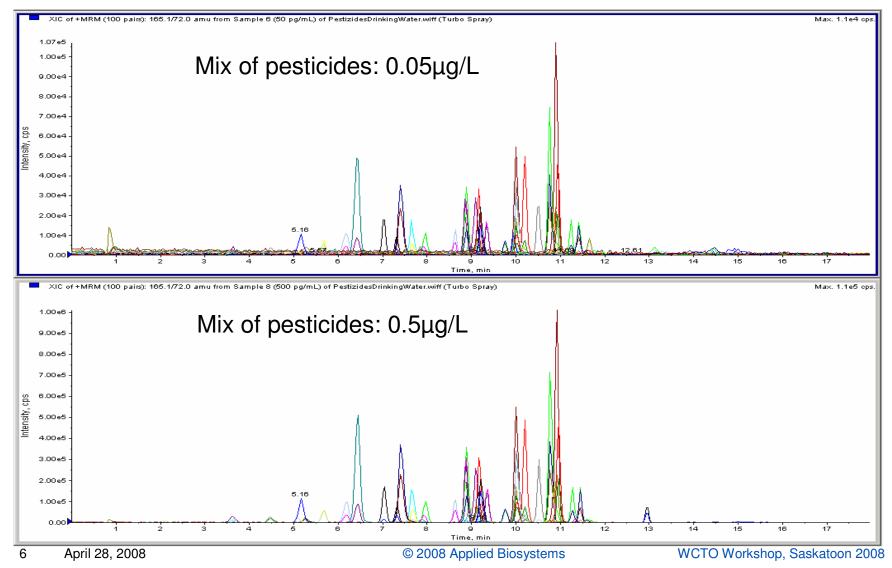
Experimental – Generic Pesticide Screening

- Sample Preparation
 - Surface water, tap water or bottled water.
 - Filtered through 0.2 μ m syringe filter (Nalgene PTFE single use filter).
 - Direct injection.

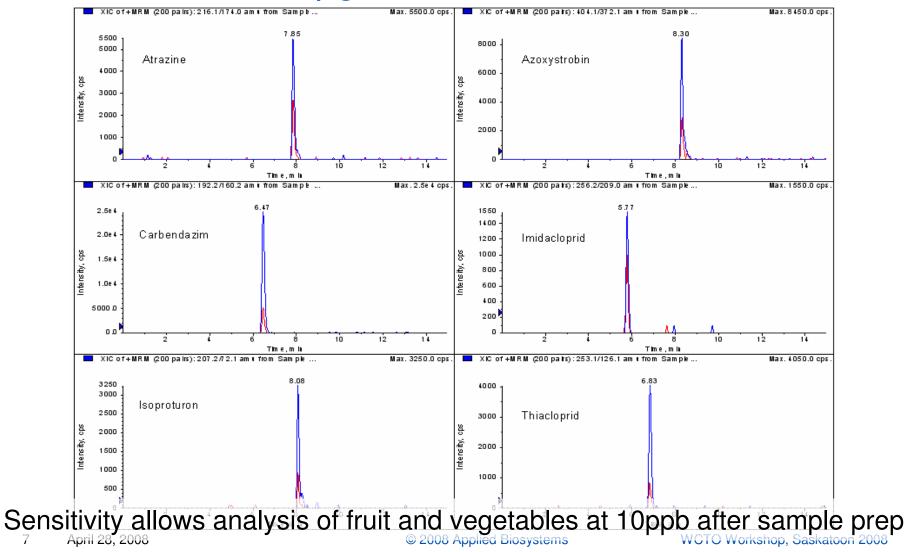
AB Applied Biosystems MDS SCIEX

Experimental – Generic Pesticide Screening

- HPLC:
 - Phenomenex Synergi 4um Fusion-RP 80A (50x2mm)
 - Eluent A: H₂O + 5mM ammonium formate
 - Eluent B: CH₃OH + 5mM ammonium formate
 - Gradient: 80/20 10/90 over 11 min
 - Hold time: 5 min. Re-equilibration 9 min
 - Flow rate: 200µL/min
 - Injection volume: 20µL

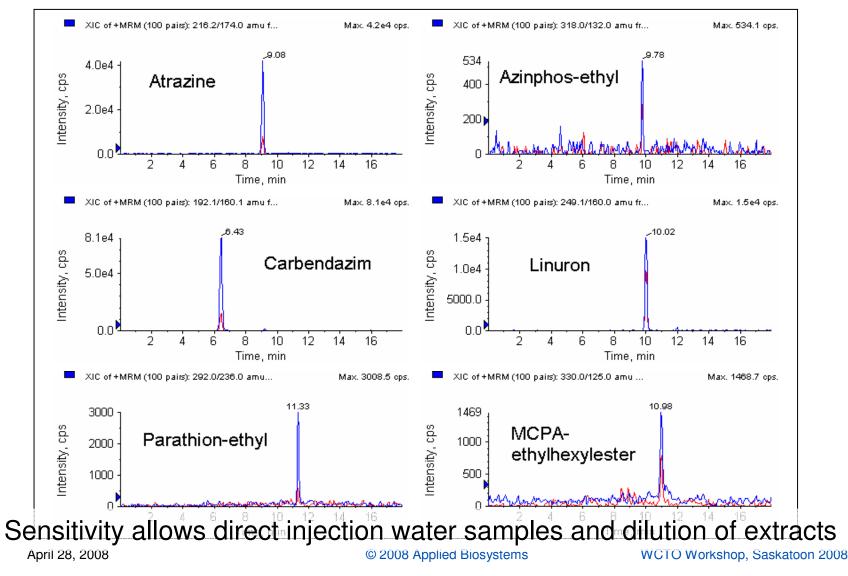

Experimental – Generic Pesticide Screening

- MS/MS:
 - 3200 Q TRAP[®] and API 5000[™] LC/MS/MS system
 - Turbo V[™] source with Electrospray probe
 - 2 MRM transitions per pesticide
 - Curtain gas: 20 psi
 - Nebulizer (Gas 1): 45 psi
 - Auxiliary (Gas 2): 65 psi
 - − Temperature: 500 °C
 - IS Voltage: 5500V

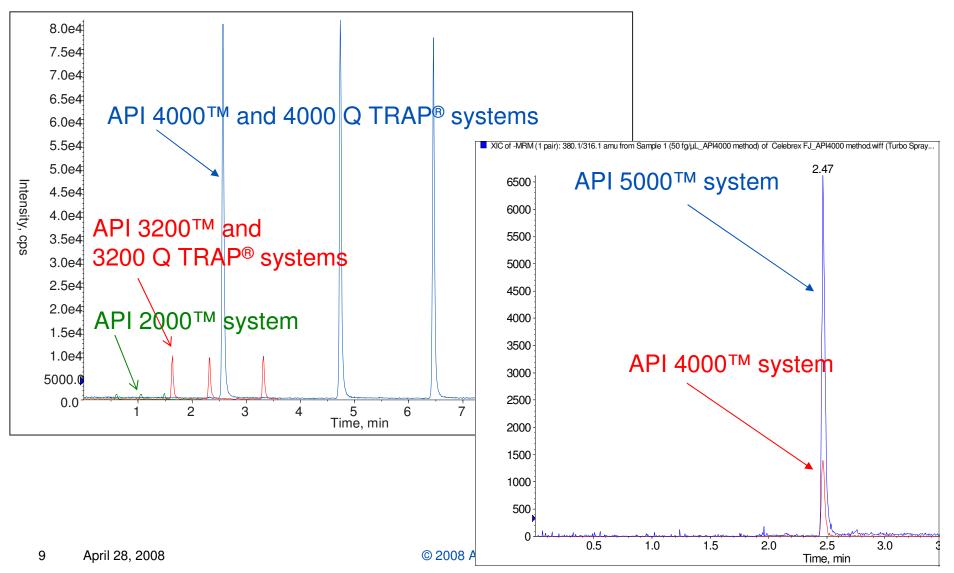

Separation and Detection of 50 Pesticides (100 MRM)

Applied Biosystems MDS SCIEX

3200 Q TRAP[®]: 1µg/L of Selected Pesticides



8

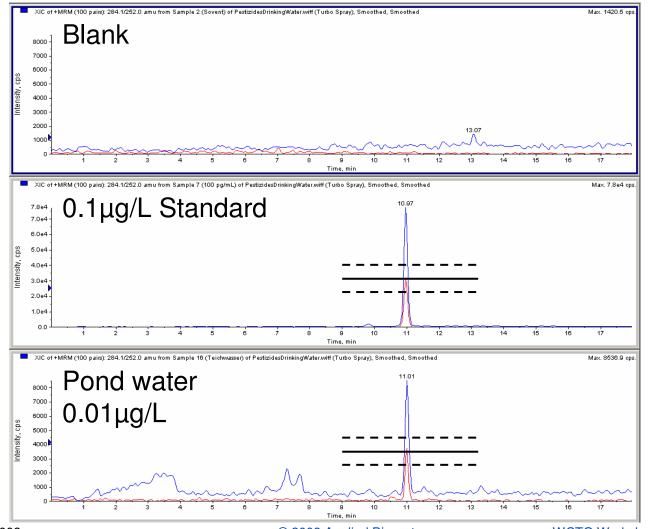

Applied Biosystems | MDS SCIEX

API 5000[™]: 0.1µg/L of Selected Pesticides

MRM Sensitivity of Different LC/MS/MS Systems

Pesticides in Drinking, Bottled and Pond Water

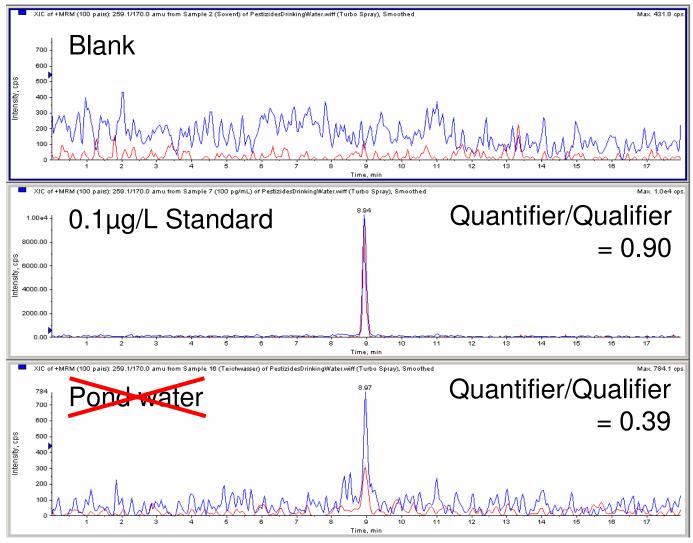
50 Pesticides detected using 2 MRM transitions


Area counts >3000

S/N >6

				k, weg, SampleCheck	, weg	
	Sample Name	Sample Type	Analyte Peak Name	Analyte Peak Area (counts)	Analyte Mass Ranges (amu)	Calculated Concentration (ng/mL)
1	Leitungswasser DA	Unknown	Desethyl-atrazine / 104.0	5.20e+003	188.0/104.0 amu	0.008
2	Leitungswasser DA	Unknown	Hexaconazole / 159.0	6.07e+003	314.1/159.0 amu	0.025
3	Leitungswasser DA	Unknown	Flufenoxuron / 158.0	4.38e+003	489.1/158.0 amu	0.005
4	Leitungswasser DA	Unknown	Flufenoxuron / 141.1	3.02e+003	489.1/141.1 amu	0.006
5	Mineralwasser	Unknown	Desethyl-atrazine / 146.0	1.92e+004	188.0/146.0 amu	0.008
6	Teichwasser	Unknown	Fenuron / 72.0	1.78e+004	165.1/72.0 amu	0.008
7	Teichwasser	Unknown	Fenuron / 120.1	6.18e+003	165.1/120.1 amu	0.073
8	Teichwasser	Unknown	Cyanazine / 214.1	1.30e+004	241.1/214.1 amu	0.014
9	Teichwasser	Unknown 🤇	Metobromuron / 170.0	6.81e+003	259.1/170.0 anu	0.008
10	Teichwasser	Unknown	Metalaxyl / 220.0	2.15e+004	280.0/220.0 amu	0.008
11	Teichwasser	Unknown	Metalaxyl / 160.0	1.25e+004	280.0/160.0 amu	0.000
12	Teichwasser	Unknown	Metolachlor / 252.0	7.35e+004	284.1/252.0 amu	0.011
13	Teichwasser	Unknown	Metolachlor / 176.1	3.12e+004	284.1/176.1 amu	0.012
14	Teichwasser	Unknown	Parathion ethyl 7 97.0	7.61e+003	292.0/97.0 amu	0.216
15	Teichwasser	Unknown	Hexaconazole / 159.0	6.71e+003	314.1/159.0 amu	0.029

Positive: Metolachlor (API 5000[™] system)

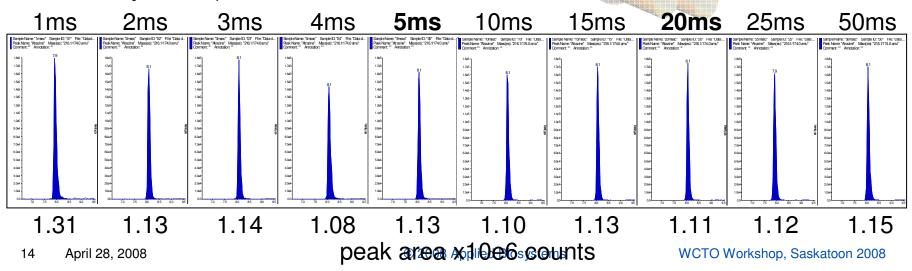

11 April 28, 2008

© 2008 Applied Biosystems

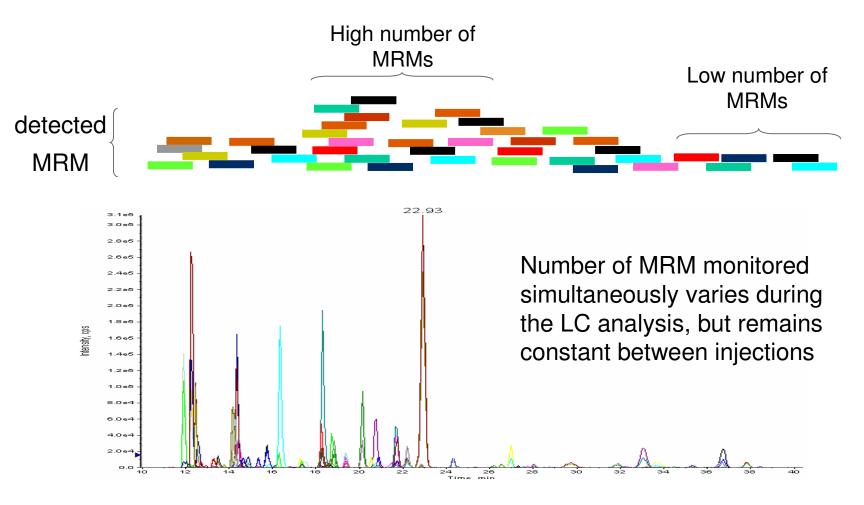
WCTO Workshop, Saskatoon 2008

Negative: Metobromuron (API 5000[™] system)

© 2008 Applied Biosystems


Enabling Technologies for Screening and Quantitation of Large Analytes Sets

- LINAC[®] Collision Cell
- Scheduled MRM (sMRM)


LINAC[®] Collision Cell – Fast MS/MS Experiments

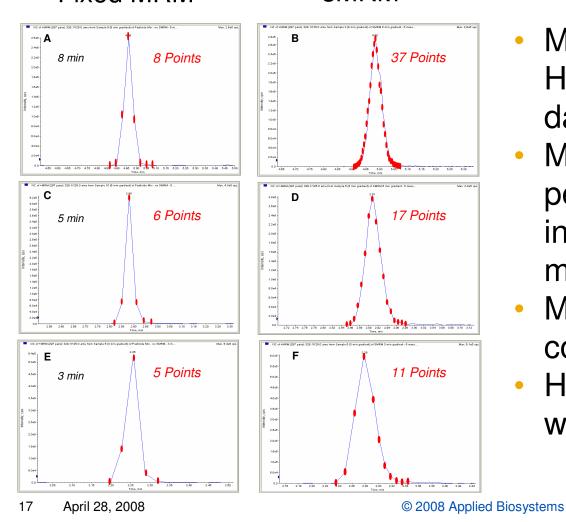
- Linear Accelerator (LINAC[®]): Tilted quadrupole rods of the collision cell cause an electric field gradient which accelerates product ions after fragmentation.
- Faster MS/MS experiments without loss in sensitivity and without false positive results due to cross talk.
- Experiment: Atrazine detected with different dwell times but constant total cycle time of 1.5s (20 MRM transitions with 5ms pause time and dummy MRM)

Scheduled MRM (sMRM)

15 April 28, 2008

© 2008 Applied Biosystems

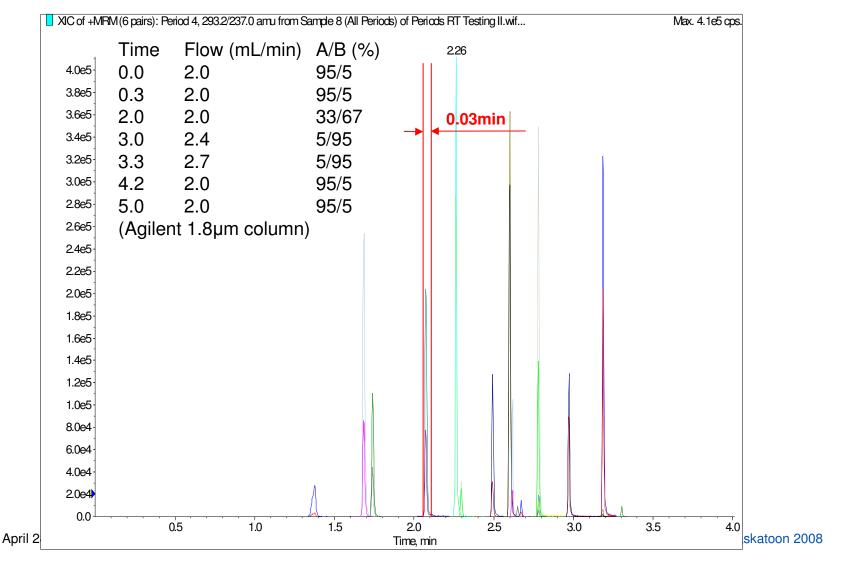
Applied Biosystems | MDS SCIEX


Acquisition Method with sMRM

Marware Configuration Mass Spec 15.013 Period 15.013 Mass Spec 15.013 Period 15.013 Marware Configuration Tune Are Resolution Optimization Adjust title Optimization Target Scan Time: 1 (sec) (s	29.000 9 33.000 1 32.000 9 33.000 2 33.000 2 32.000 9 30.000 7 36.000 7 34.000 7 34.000 2	Q3 Mass (Da) 97.100 109.100 99.000 91.100 211.200 91.100 77.000 77.100	Time (min) 4.3 3.3 4.3 4.6 4.4 4.2	10 17alpha-Hydroxyprogesterone 17-alpha-Methyltestosterone 2-Amino-5-chioroberzophenone	CE (volts) 50.000 35.000 50.000
Aquanitative Optimization	43.000 9 33.000 2 32.000 9 30.000 7 30.000 7 34.000 7 34.000 2	91.100 211.200 91.100 77.000 77.100	4.6 4.4		50.000
— E Build Acquisition Method Target Scan Time: 12 351 — Build Acquisition Batch 13 258 44	32,000 17	77.000 261.000 78.000	5.2 4.5 3.5 3.9 6.7	2-Hydroxyethylflurazepam 3.4-Dimethoxyphenethylamine 3.4-Methylenedioxymphetamine 3.4-Methylenedioxymethylampheta 3.4-Methylenedioxymethampheta 3.5-Diiodotyrosine 3-Hydroxybromazepam	50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000
22 Express View 15 153 Ø Explore (1) Period Summary 16 328 26 Open Data File Duration: 15.013 (min) 17 266	51.000 1 58.000 1 19.000 7 53.000 9 28.000 1 36.000 1 36.000 1 70.000 1	105.100 105.100 77.100 92.100 165.200 121.100 121.100	4.3 4.0 4.2 4.1 3.9 5.7 0.3	3-Methylfentanyl 4-Benzamidosalicyclic acid 4-Methylumbellieryl acetate 6-Mercaptourine 6-O-Monoacetylmorphine 7-Aminodesmethylflunitrazepam	50.000 50.000 50.000 50.000 50.000 50.000 50.000
Quantitate 20 252 21 21 21 21 21 21 22 21 21 21 21 21 22 21 21 23 427 23 23 427 24 337 23 427	52.000 1 15.000 6 46.000 7 27.000 2 37.000 1	135.100 121.100 57.100 57.100 207.200 116.100 59.000	5.4 4.6 5.1 4.1 4.3 3.1 0.3	7-Aminoflunitrazepam 7-Aminonitrazepam 8-Chlorotheophylline 8-Hydroxyrisperidone 9-Hydroxyrisperidone Acebulolol Acceptromal	50.000 50.000 50.000 50.000 50.000 35.000 50.000
2 Companion Software 27 354 - 5. Modification MRM 28 416 - 57 Tempo LC device CH1 29 364 - 57 Tempo LC device CH2 31 327	54.000 2 16.000 1 54.000 2 27.000 5 27.000 8	32.100 214.100 139.100 249.100 58.000 36.100 158.200	5.3 4.1 4.3 0.3 0.3 5.4 4.7	Aceclórenac Acemetacin Acenetacin Acepromazine Aceprometazine Acetaninodantrolene	50.000 50.000 35.000 50.000 50.000 50.000 50.000
Image: Semiple region of an output of the semiple region 33 367 34 239 35 180 36 226 37 349	67.000 1 39.000 1 30.000 6 26.000 1 49.000 2	122.100 109.100 35.000 135.000 232.200 145.100	3.8 4.1 4.4 7.8 7.0 6.2	Acetianin Acetiylaminonitroprophoxybenzen Acetylsalicylamid Aciclovir Acrivastine Actinoquinol	35.000

User Name: gibbonjn@sciex.mdsinc.com D:\Analyst Data 🛷 Idle 🧵 Idle 👖 Idle 👯 Idle Skatoon 2008

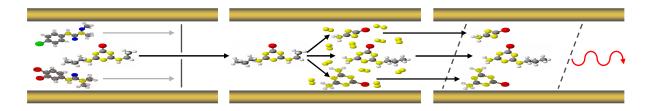
Advantages of sMRM Fixed MRM sMRM


 More data points over HPLC peaks to improve data quality

Applied Biosystems MDS SCIEX

- More MRM transitions per experiment to increase number of monitored compounds
- More time for confirmatory analysis
- High resolution HPLC with MS/MS detection

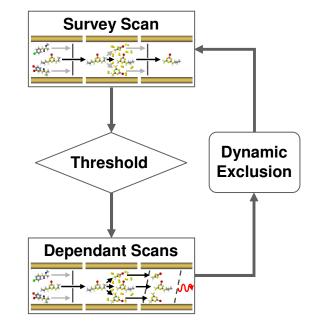
34 MRM Transitions in 4min with sMRM



Applied Biosystems MDS SCIEX

18

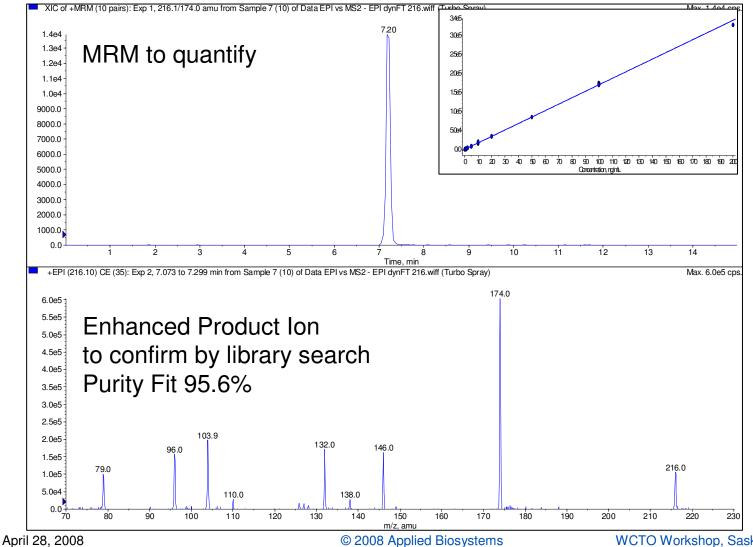
Higher Degree of Confirmation using MS/MS Spectra



- Enhanced Product Ion (EPI) scan of Q TRAP[®] systems
 - \rightarrow MS/MS Spectra contains information of all MRM transitions of the analyte.
 - \rightarrow EPI has sensitivity level of MRM.
 - → EPI is less time consuming than acquisition of many confirmatory MRM transitions (100MRM with 5ms dwell + 5ms pause ~ 1s vs. 2 EPI over 500amu with 4000amu/s and 100ms fill time ~ 1s).
 - \rightarrow Confirmation with library searching.

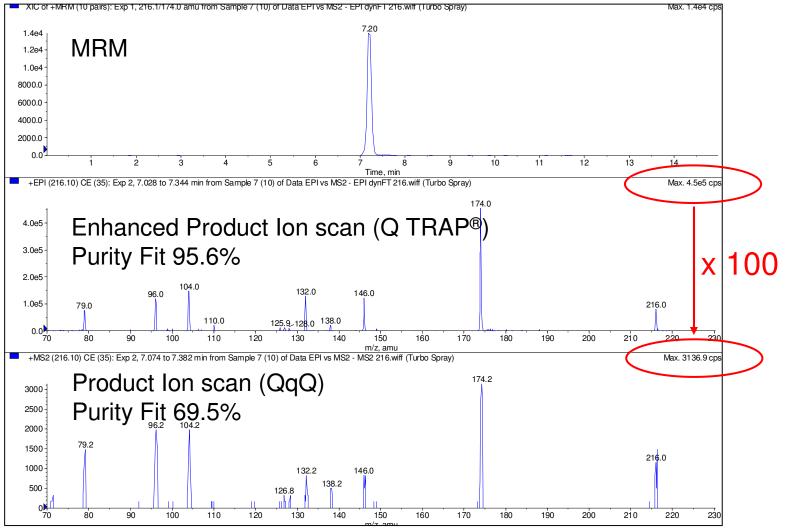
Information Dependent Acquisition (MRM to EPI)

- Information Dependent Acquisition (IDA) of EPI spectra
 - MRM with high selectivity and sensitivity triggers automatically EPI scan
 - Dynamic background subtraction to confirm co-eluting compounds



21

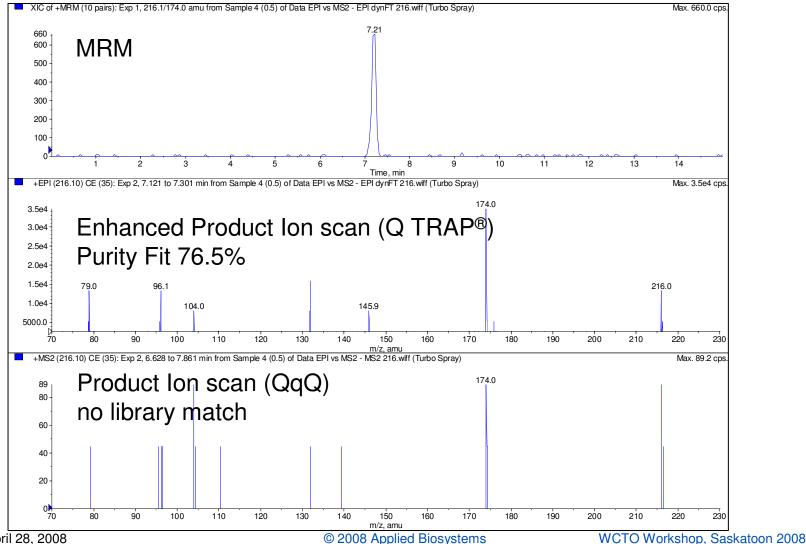
Applied Biosystems | MDS SCIEX


Quantitation and Confirmation

WCTO Workshop, Saskatoon 2008

Confirmation by Q TRAP[®] or QqQ (10ng/mL Atrazine)

22 April 28, 2008


© 2008 Applied Biosystems

WCTO Workshop, Saskatoon 2008

Confirmation by Q TRAP® or QqQ (0.5ng/mL Atrazine)

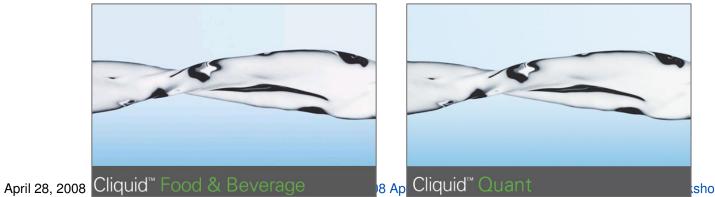
Applied Biosystems | MDS SCIEX



23 April 28, 2008

24

Library Search Results using QqQ or Q TRAP[®] in comparison to a calibration line in MRM



Ease-of-Use Software for LC/MS/MS Analysis

Cliquid[™] Software – 'Run Samples' Wizard

Cliquid(TM) Software for Routine Food Testi	ng					
Run Sample	es	Home	Help	Log Out		
Step 1 Choose test	÷		Acidic pesticides 🥨	0		<u>^</u>
Step 2 Build sample list		 Pesticides - F Pesticides - T 	Organophosphorus Phenyl ureas 🏾 🏾 Triazines 🔏	ø		-
Step 3 Customize report					Clippid ^{ard} Software for Rodrer Food Testing bottom C.41.00, C48.2771-23.2 Col.43.40, C48.27045441	Citquid" Software
Step 4 Submit samples		O Malachite Gr	een 🧐	< Back		Calaron Phonomenes (Angel & Fusion 1997) Beart (): () (): (): (): (): (): (): (): ():
Instrument Panel Stop Standby Live View Restart Event Log	Sta	ndby	Mass Spec Standby Autosampler Standby		$\begin{array}{c} Restance of the second secon$	41 100 * 44 100 5 0 44 10 104 * 1 44 104 10 104 * 1 104 104 104 104 104 104 104 104 104 1

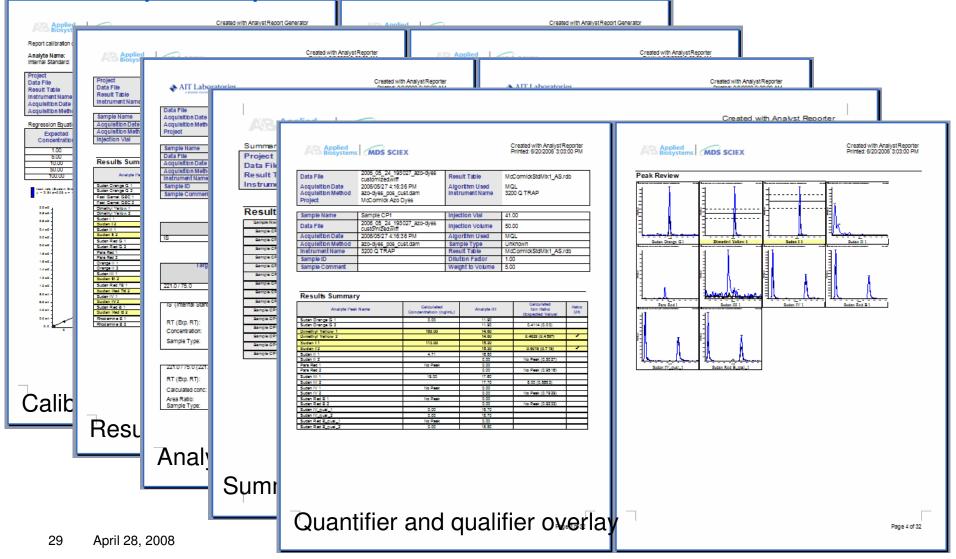
26

Automatic Acquisition

Cliquid(TM) Software for Routine Food Testing						_			
Adrianna		Hom	e	Help	b Log	Out			
		· · · · ·	r la					earch	
What would you like to do?		Job List		ample List			3	earch	
Run samples	0	Selecte	d Job: Azo-dye	es (13 Sam	ples) 📇				
Reprocess samples	0	Status	Sample Name	Position	Time Completed	Test Performed	Move	Delete 🛆	
System suitability test	0	•••	blank	1	12/22/2006 11:47:43 AM	Azo-dyes - 13 azo-dyes			
e jotom ouncusing toot		•••	standard 1 standard 5	2	12/22/2006 12:28:43 PM 12/22/2006 1:09:43 PM	Azo-dyes - 13 azo-dyes Azo-dyes - 13 azo-dyes	下小 マート	X S X S	
Setup			standard 5	4	12/22/2006 1:50:43 PM	Azo-dyes - 13 azo-dyes Azo-dyes - 13 azo-dyes	* * ¥	X	
New project	0		standard 10	5	12/22/2006 2:31:43 PM	Azo-dyes - 13 azo-dyes	* + V	×	
Autosampler	0		standard 100	6	12/22/2006 3:12:43 PM	Azo-dyes - 13 azo-dyes	TA U	×ŧ	
User profile	0		blank	1	12/22/2006 3:53:43 PM	Azo-dyes - 13 azo-dyes	$\overline{\mathbf{A}}$	×	
			U 01	7	12/22/2006 4:34:43 PM	Azo-dyes - 13 azo-dyes	F A U	×	
		•••	U 02	8	12/22/2006 5:15:43 PM	Azo-dyes - 13 azo-dyes	F ^ 	×	
		•••	U 03	9	12/22/2006 5:56:43 PM	Azo-dyes - 13 azo-dyes	* ^ v	×ŧ	
		•••	U 04	10	12/22/2006 6:37:43 PM	Azo-dyes - 13 azo-dyes	* ^ v	×	
		•••	U 05	11	12/22/2006 7:18:43 PM	Azo-dyes - 13 azo-dyes		×	
		••••	blank	1	12/22/2006 7:59:43 PM	Azo-dyes - 13 azo-dyes	₮ ↑₩		
Standby Live View	War 42 Seconds Ri		ng u	A	ass Spec utilibrating utosampler utilibrating	Pump Equilibrating Column Oven Equilibrating			

27

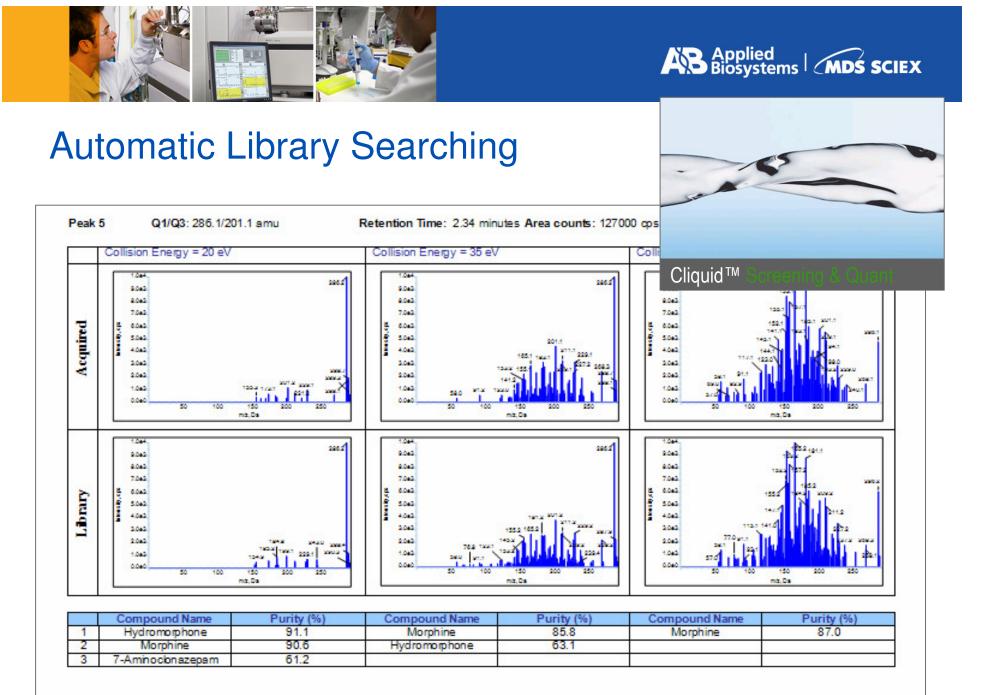
April


Automatic Reporting

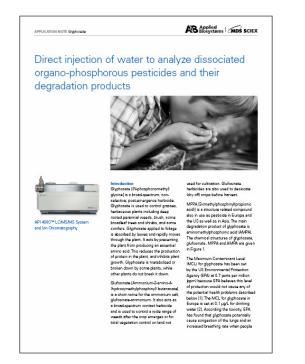
Cliquid [™] Sc for Food Welcome Adrianna	oftware Testing	Home	Help		Log Out			
What would you like to do	?	Job List	Sample List	Reports		C	ïlter Job List	
Run samples Reprocess samples System suitability test Setup New project Autosampler User profile	000000000000000000000000000000000000000	Selected Job: Azc	-dyes_Foodlab 01234 Report Name 2006_06_14_170621 2006_06_14_170621 2006_06_14_170621	Azo-dye Azo-dye	Report Style Report calibration curve (1 pe Report summary of unknown Report unknown samples wit	Move	Delete	
Instrument Panel Stop Standby Live View Restart Event Log		Quiring mple: standard 1	Mass Spe Waiting Autosam Waiting		Pumps Equilibrating Column Oven Waiting			

28

Example Reports based on *.dot



Quickly Build Methods with the MRM catalog


Cliquid(TM) Software for Routine Quantitation										
Tests	Home	Help	Log Out							
What would you like to do? Select compounds to include in the test										
Create a test → Modify a test	Display compo	unds with: ⊚Posi	tive polarity ⊖Ne	egative po	larity					
Reorder tests	A∨ailable comp	ounds Search: r	norphine	Υοι	Ir selections					
Activate/Deactivate tests	Compound Na	me <u>Class</u>	CAS	A →	Compound Name					
Delete tests	Morphine Morphine	opiate	57-27-2		6-Acetylmorphine					
	Morphine-3-g	lucur opiate	20290-09-9		Cocaine					
	Morphine-6-g	lucur opiate	20290-10-2		Codeine					
	Morphine-D3	opiate	67293-88-3							
					Hydromorphone					
				~						
	Cancel		< Back		Next >					
Instrument Panel	andhy	Mass Spec		Pump						
	andby	Standby		Standb	y C					
Standby Live View Restart Event Log	-	Autosampler Standby		Colum Standby	n Oven					

30

LC/MS/MS Analysis of Very Polar Pesticides

Direct injection of water samples to analyze: Glyphosate, AMPA, Glyphosinate, MPPA Dionex IonPac AG11 (50x2mm) column Water, citric acid, triethylamine API 4000[™] LC/MS/MS system

Paraquat, Diquat Restek Ultra Quat 50x2.1mm Water/Acetonitril + HFBA API 3200™ LC/MS/MS system

Conclusion

- LC/MS/MS: ideal technology for multi targeted screening of pesticides in food, water and environmental samples
 - 2 Multiple Reaction Monitoring transitions at correct retention time are typically used to quantify and confirm
 - API 3200[™] / 3200 Q TRAP[®] LC/MS/MS systems give sufficient sensitivity to analyze food at 10ppb levels
 - Higher sensitivity (allows direct injections of water samples and dilution of extracts to reduce matrix effects)
- Cliquid[™] Software makes LC/MS/MS easy to use (automatic report generation and MRM catalogue of > 500 pesticides)
- Scheduled MRM to detect more MRM transitions per time
- Enhanced Product Ion scan with higher degree of confirmation
- LC/MS/MS analysis of very polar compounds with special columns

vstems | MDS SCIEX

Acknowledgements

- Federal Institute for Risk Assessment Berlin (Germany)
- Chinese Institute for Quarantine Dalian (China)
- Kobe Quarantine Station Kobe (Japan)
- Restek and Dionex for assistance in HPLC development
- Colleagues of Applied Biosystems / MDS Sciex

Legal acknowledgements

- For Research Use Only. Not for use in diagnostic procedures.
- Applied Biosystems, Analyst, Q TRAP, and TurbolonSpray are registered trademarks and Applera, Cliquid, API 2000, API 3000, API 3200, API 4000, API 5000, Curtain Gas, and IonSpray are trademarks of Applera Corporation or its subsidiaries in the US and/or certain other countries.
- PhotoSpray is a trademark of Applied Biosystems/MDS Sciex, a joint venture between Applera Corporation and MDS, Inc.
- MDS and MDS Sciex are trademarks of MDS Inc.
- LINAC is a registered trademark of MDS Inc.
- All other trademarks are the sole property of their respective owners.

Thanks for Listening!

